

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

A AND AS LEVEL - NOVEMBER 20039709/871951For using Newton's second law with $a = v^2/r$ M1 $F = 50\ 000\ \frac{25^2}{1250}$ A1Magnitude of the force is 25 000 NA11For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\bar{y} = 5$ B12(i)For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\bar{y} = 5$ B12(ii)For using tan $\theta = \frac{10}{y}$ or equivalentM1 $\theta = 63.4^{\circ}$ A13(iii)For using $F < \mu R$ M1 $mg \sin \theta < \mu mg \cos \theta$ A1Alternative for the above 2 marks:For using $\mu = \tan \phi$ where ϕ is the angle of frictionM1 $\phi > \theta$ because cone topples without slidingA1Coefficient is greater than 2 (ft on tan θ in (i))A1N.B. Direct quotation of "topples if $\mu > \tan \theta^n$ (scores B2); $\mu > 2$ (B1)B13(i) $T = \frac{88 \times 0.1}{0.4}$ B1For using EPE = $\frac{2x^2}{2L}$ $(\frac{88 \times 0.1^2}{2 \times 0.4})$ M1(ii)For using EPE = $\frac{2x^2}{2L}$ $(\frac{88 \times 0.1^2}{2 \times 0.4})$ M1(iii)Change in GPE = $0.2 \times 10 \times 0.1$ B1For using the principle of conservation of energy (KE, EPE and GPE must all be represented)M1 $(\frac{1}{2}\0.2v^2 = 1.1 - 0.2]$ Speed is 3 ms^4A1	Page	1	Mark Scheme Syllabus	Paper
I For using Newton's second law with $a = v^2/r$ MI $F = 50\ 000\ \frac{25^2}{1250}$ A1 Magnitude of the force is 25 000 N A1 [3] (i) For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\overline{y} = 5$ B1 For using tan $\theta = \frac{10}{\overline{y}}$ or equivalent M1 $\theta = 63.4^{\circ}$ A1 (ii) For using $F < \mu R$ M1 $mg \sin\theta < \mu mg \cos\theta$ A1 Alternative for the above 2 marks: For using $\mu = \tan \phi$ where ϕ is the angle of friction $M1$ $\phi > \theta$ because cone topples without sliding A1 Coefficient is greater than 2 (ft on tan θ in (i)) V.B. Direct quotation of "topples if $\mu > \tan\theta''$ (scores B2); $\mu > 2$ (B1) (ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial acceleration is 100 ms ⁻² (iii) For using EPE = $0.2 \times 10 \times 0.1$ B1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}0.2v^2 = 1.1 - 0.2$] Speed is 3 ms ⁻¹ A1			A AND AS LEVEL – NOVEMBER 2003 9709/8719	5
$F = 50 \ 000 \ \frac{25^2}{1250}$ A1 Magnitude of the force is 25 000 N A1 [3] (i) For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\overline{y} = 5$ For using tan $\theta = \frac{10}{y}$ or equivalent $\theta = 63.4^{\circ}$ A1 (ii) For using $F < \mu R$ (iii) For using $F < \mu R$ (iii) For using $e < \mu R$ (iii) Coefficient is greater than 2 (ft on tan θ in (i)) N.B. Direct quotation ended) (3) (i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3) term equation needed) (3) term equation needed) (3) term equation needed) (3) term equation needed) (4) thirtial cleastic energy is 1.1 J (5) Change in GPE = $0.2 \times 10 \times 0.1$ For using the principle of conservation of energy (KE, EPE and GPE must all be represented) ($\frac{1}{2}0.2y^2 = 1.1 - 0.2$] Speed is 3 ms ⁻¹ (1)	1		For using Newton's second law with $a = v^2/r$	M1
Magnitude of the force is 25 000 N A1 Magnitude of the force is 25 000 N A1 [3] (i) For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\overline{y} = 5$ B1 For using tan $\theta = \frac{10}{y}$ or equivalent M1 $\theta = 63.4^{\circ}$ A1 (ii) For using $F < \mu R$ M1 $mg \sin\theta < \mu mg \cos\theta$ A1 Alternative for the above 2 marks: For using $\mu = \tan \phi$ where ϕ is the angle of friction M1 $\phi > \theta$ because cone topples without sliding A1 Coefficient is greater than 2 (ft on tan θ in (i)) A11 N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) (ii) $T = \frac{88 \times 0.1}{0.4}$ B1 For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² A1 (iii) For using EPE = $\frac{Ax^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial clastic energy is 1.1 J A1 (iii) Change in GPE = 0.2 x 10 x 0.1 B1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}0.2y^2 = 1.1 - 0.2$] Speed is 3 ms ⁻¹ A1			$F = 50\ 000\ \frac{25^2}{1250}$	A1
[3] (i) For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\overline{y} = 5$ B1 For using tan $\theta = \frac{10}{\overline{y}}$ or equivalent M1 $\theta = 63.4^{\circ}$ A1 (ii) For using $F < \mu R$ M1 $mg \sin\theta < \mu mg \cos\theta$ A1 Alternative for the above 2 marks: For using $\mu = \tan \phi$ where ϕ is the angle of friction M1 $\phi > \theta$ because cone topples without sliding A1 Coefficient is greater than 2 (ft on tan θ in (i)) N.B. Direct quotation of "topples if $\mu > \tan\theta^{-1}$ (scores B2); $\mu > 2$ (B1) (i) $T = \frac{88 \times 0.1}{0.4}$ B1 For using Rewton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial celeration is 100 ms ⁻² A1 (ii) For using EPE = $\frac{2x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J (iii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) $[\frac{1}{2}0.2y^2 = 1.1 - 0.2]$ Speed is 3 ms ⁻¹ A1			Magnitude of the force is 25 000 N	A1
2 (i) For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\overline{y} = 5$ B1 For using $\tan \theta = \frac{10}{\overline{y}}$ or equivalent M1 $\theta = 63.4^{\circ}$ A1 [3] (ii) For using $F < \mu R$ M1 mg sin $\theta < \mu mg \cos\theta$ A1 Alternative for the above 2 marks: For using $\mu = \tan \phi$ where ϕ is the angle of friction M1 $\phi > \theta$ because cone topples without sliding A1 Coefficient is greater than 2 (ft on $\tan \theta$ in (i)) N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) [3] (i) $T = \frac{88 \times 0.1}{0.4}$ B1 For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² A1 (i) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J (ii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}0.2y^2 = 1.1 - 0.2$] Speed is 3 ms ⁻¹ A1				[3]
lowest point of the cone, and with $\overline{y} = 5$ For using $\tan \theta = \frac{10}{\overline{y}}$ or equivalent $\theta = 63.4^{\circ}$ (ii) For using $F < \mu R$ $mg \sin \theta < \mu mg \cos \theta$ (iii) For using $f < \mu R$ $cor sing \mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without sliding Coefficient is greater than 2 (ft on $\tan \theta$ in (i)) N.B. Direct quotation of "topples if $\mu > \tan \theta$ " (scores B2); $\mu > 2$ (B1) (i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² ($\frac{88 \times 0.1^2}{2 \times 0.4}$) Initial elastic energy is 1.1 J (ii) Change in GPE = $0.2 \times 10 \times 0.1$ For using the principle of conservation of energy (KE, EPE and GPE must all be represented) $[\frac{1}{2}0.2v^2 = 1.1 - 0.2]$ Speed is 3 ms ⁻¹ (1) [3]	2 (i)		For stating or implying that the centre of mass is vertically above the	
For using tan $\theta = \frac{10}{\overline{y}}$ or equivalent $\theta = 63.4^{\circ}$ (ii) For using $F < \mu R$ (iii) For using $F < \mu R$ (iii) For using $\mu = \tan \theta$ where ϕ is the angle of friction $\eta g \sin \theta < \mu ang \cos \theta$ (iii) Alternative for the above 2 marks: for using $\mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without sliding (iv) Coefficient is greater than 2 (ft on $\tan \theta$ in (i)) N.B. Direct quotation of "topples if $\mu > \tan \theta$ " (scores B2); $\mu > 2$ (B1) (iv) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² ($\frac{88 \times 0.1^2}{2 \times 0.4}$) (iv) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) (iv) Change in GPE = 0.2 x 10 x 0.1 (2) For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}0.2v^2 = 1.1 - 0.2$] Speed is 3 ms ⁻¹ (3)			lowest point of the cone, and with $\overline{y} = 5$	B1
$\theta = 63.4^{\circ}$ A1 (ii) For using $F < \mu R$ mg sin $\theta < \mu mg$ cos θ A1 Alternative for the above 2 marks: ^{cor} using $\mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without sliding Coefficient is greater than 2 (ft on tan θ in (i)) N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) (i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² (ii) For using EPE = $\frac{2x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J (iii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 ν^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ A1 A1 A1 A1 A1 A1 A1			For using $\tan \theta = \frac{10}{v}$ or equivalent	M1
[3](ii)For using $F < \mu R$ $mg \sin\theta < \mu mg \cos\theta$ Alternative for the above 2 marks:For using $\mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without slidingCoefficient is greater than 2 (ft on $\tan\theta$ in (i))N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1)(a)(b)(c) </td <td></td> <td></td> <td>$\theta = 63.4^{\circ}$</td> <td>A1</td>			$\theta = 63.4^{\circ}$	A1
(ii) For using $F < \mu R$ M1 $mg \sin\theta < \mu mg \cos\theta$ A1 Alternative for the above 2 marks: for using $\mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without sliding A1 Coefficient is greater than 2 (ft on $\tan\theta$ in (i)) N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) (3) (4) (5) $T = \frac{88 \times 0.1}{0.4}$ B1 For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3) term equation needed) Initial acceleration is 100 ms ⁻² (3) (ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J (iii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ A1				[3]
$mg \sin\theta < \mu mg \cos\theta$ A1Alternative for the above 2 marks: For using $\mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without slidingM1 $A1$ Coefficient is greater than 2 (ft on tan θ in (i))A14 (Sources B2); $\mu > 2$ (B1)A14 (B)N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1)B1 (B)Set (i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² M1 (A14 (B)(ii)For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$)M1 (A)(iii)Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) ($\frac{1}{2}0.2v^2 = 1.1 - 0.2$] Speed is 3 ms ⁻¹ A1[3][3]	(ii)		For using $F < \mu R$	M1
Alternative for the above 2 marks: For using $\mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without sliding Coefficient is greater than 2 (ft on tan θ in (i)) N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) (3) (i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² (ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) Initial elastic energy is 1.1 J (iii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ Alternative for the second secon			$mg\sin\theta < \mu mg\cos\theta$	A1
For using $\mu = \tan \phi$ where ϕ is the angle of friction $\phi > \theta$ because cone topples without sliding Coefficient is greater than 2 (ft on tan θ in (i)) N.B. Direct quotation of "topples if $\mu > \tan\theta$ " (scores B2); $\mu > 2$ (B1) (3) (i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² (ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) Initial elastic energy is 1.1 J (iii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 $v^2 = 1.1 - 0.2$] Speed is 3 ms ⁻¹ A1	Alternati	ve foi	the above 2 marks:	
$b > \theta$ because cone topples without slidingA1Coefficient is greater than 2 (ft on tan θ in (i))A11N.B. Direct quotation of "topples if $\mu > \tan\theta^{p}$ (scores B2); $\mu > 2$ (B1)[3](a) $T = \frac{88 \times 0.1}{0.4}$ [3]For using Newton's second law (22 - 0.2 x 10 = 0.2a)M1(3 term equation needed)[3]Initial acceleration is 100 ms ⁻² A1(ii)For using EPE = $\frac{\lambda x^2}{2L}$ $(\frac{88 \times 0.1^2}{2 \times 0.4})$ (iii)For using term equation is 1.1 JA1[2](iii)Change in GPE = 0.2 x 10 x 0.1For using the principle of conservation of energy (KE, EPE and GPE must all be represented)M1 $[\frac{1}{2} 0.2v^2 = 1.1 - 0.2]$ A1[3][3]	For using	g $\mu =$	$\tan \phi$ where ϕ is the angle of friction	M1
Coefficient is greater than 2 (ft on tan θ in (i)) N.B. Direct quotation of "topples if $\mu > \tan \theta$ " (scores B2); $\mu > 2$ (B1) (3) (3) (3) (4) (5) (1) (3) (3) (4) (3) (4) (4) (4) (4) (5) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7	$\phi > \theta$ be	cause	cone topples without sliding	Al
(i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) (3 term equation needed) Initial acceleration is 100 ms ⁻² (3) (ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) Initial elastic energy is 1.1 J (3) (iii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ (3)	JR Dir	ect au	Coefficient is greater than 2 (ft on $\tan\theta$ in (i))	Alf
(i) $T = \frac{88 \times 0.1}{0.4}$ For using Newton's second law (22 - 0.2 x 10 = 0.2a) M1 (3 term equation needed) Initial acceleration is 100 ms ⁻² (ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J (iii) Change in GPE = 0.2 x 10 x 0.1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ A1 [3]	N.D. DII	eet qu	iotation of toppies if $\mu > \tan \theta$ (scores B2), $\mu > 2$ (B1)	[3]
0.4For using Newton's second law $(22 - 0.2 \ge 10 = 0.2a)$ M1(3 term equation needed)Initial acceleration is 100 ms ⁻² A1[3][3](ii)For using $EPE = \frac{\lambda x^2}{2L}$ $(\frac{88 \times 0.1^2}{2 \times 0.4})$ M1Initial elastic energy is 1.1 JA1[2](iii)Change in GPE = $0.2 \ge 10 \ge 0.1$ B1For using the principle of conservation of energy (KE, EPE and GPE must all be represented)M1 $[\frac{1}{2}0.2v^2 = 1.1 - 0.2]$ Speed is 3 ms ⁻¹ A1[3]	3 (i)	I	$T = \frac{88 \times 0.1}{2}$	B1
(3 term equation needed) Initial acceleration is 100 ms ⁻² A1 [3] (ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J [2] (iii) Change in GPE = 0.2 x 10 x 0.1 B1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) M1 [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ A1 [3]			0.4 For using Newton's second law $(22 - 0.2 \times 10 = 0.2a)$	M1
(ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J [2] (iii) Change in GPE = 0.2 x 10 x 0.1 B1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ A1			(3 term equation needed) Initial acceleration is 100 ms^{-2}	A 1
(ii) For using EPE = $\frac{\lambda x^2}{2L}$ ($\frac{88 \times 0.1^2}{2 \times 0.4}$) M1 Initial elastic energy is 1.1 J [2] (iii) Change in GPE = 0.2 x 10 x 0.1 B1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ A1				[2]
(ii) For using EPE = $\frac{\lambda x^2}{2L}$ $(\frac{88 \times 0.1^2}{2 \times 0.4})$ M1 Initial elastic energy is 1.1 J [2] (iii) Change in GPE = 0.2 x 10 x 0.1 B1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) [$\frac{1}{2}$ 0.2 v^2 = 1.1 - 0.2] Speed is 3 ms ⁻¹ A1 [3]				[3]
$2L$ 2×0.4 Initial elastic energy is 1.1 JA1[2](iii)Change in GPE = $0.2 \times 10 \times 0.1$ For using the principle of conservation of energy (KE, EPE and GPE must all be represented)M1 $[\frac{1}{2}0.2v^2 = 1.1 - 0.2]$ Speed is 3 ms ⁻¹ A1[3]	(ii))	For using EPE = $\frac{\lambda x^2}{2L}$ $(\frac{88 \times 0.1^2}{2 \times 0.4})$	M1
[2] (iii) Change in GPE = $0.2 \times 10 \times 0.1$ For using the principle of conservation of energy (KE, EPE and GPE must all be represented) $\left[\frac{1}{2}0.2v^2 = 1.1 - 0.2\right]$ Speed is 3 ms ⁻¹ [3]			Initial elastic energy is 1.1 J 2×0.4	A1
(iii) Change in GPE = $0.2 \times 10 \times 0.1$ B1 For using the principle of conservation of energy (KE, EPE and GPE must all be represented) M1 $\left[\frac{1}{2}0.2v^2 = 1.1 - 0.2\right]$ Speed is 3 ms ⁻¹ A1 [3]				[2]
For using the principle of conservation of energy (KE, EPE and GPE must all be represented) M1 $\left[\frac{1}{2}0.2v^2 = 1.1 - 0.2\right]$ Speed is 3 ms ⁻¹ A1 [3]	(iii)	i)	Change in GPE = $0.2 \times 10 \times 0.1$	B1
$\left[\frac{1}{2}0.2v^{2} = 1.1 - 0.2\right]$ Speed is 3 ms ⁻¹ [3]			For using the principle of conservation of energy (KE, EPE and GPE must all be represented)	M1
Speed is 3 ms ⁻¹ A1 [3]			$\left[\frac{1}{2}0.2v^2 = 1.1 - 0.2\right]$	
[3]			Speed is 3 ms ⁻¹	A1
				[3]

Page 2	Mark Scheme Syllabu	s Paper
	A AND AS LEVEL – NOVEMBER 2003 9709/871	9 5
(i)	e.g. For taking moments about <i>BC</i>	Ν
	Distance of centre of mass of triangular portion is	
	$9.5 + \frac{1}{3} \ge 6$ (= 11.5)	В
	$8 \times 9.5 \times 4.75 + \frac{1}{2} \times 8 \times 6 \times 11.5 = (8 \times 9.5 + \frac{1}{2} \times 8 \times 6) \overline{x}$	А
	Distance is 6.37 cm	А
J.B.	Alternative method e.g. Moments about axis through <i>A</i> perpendicular to <i>AB</i>	M
	Distance of C.O.M. of triangular piece removed is 2	В
	$(8 \times 15.5) \times 7.75 - (\frac{1}{2} \times 8 \times 6) \times 2 = (124 - 20) \overline{x}_1$	А
	$(\bar{x}_1 = 9.13)$ therefore distance is 6.37 cm	А
		[4
(ii)	For taking moments about A For LHS of $80(15.5 - 6.37) = T \times 15.5 \sin 30^{\circ}$ For RHS of above equation Tension is 94.2 N	M A A A
		[4
(iii)	For resolving forces on the lamina vertically (3 term equation) ($V = 80 - 94.2 \times 0.5$) or taking moments about B	N
	$(15.5V = 8 \times 10 \times 6.37)$ Magnitude of vertical component is 32.9 N	А
		[2

PMT

	א אר	17
-	-11/	
	1.01	

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	5

5

(i) For using
$$\dot{y} = \dot{y}_0 - gt$$
 with $\dot{y} = 0$ $(t = 2\sin\alpha)$ M1

For using
$$y = \dot{y}_0 t - \frac{1}{2}gt^2$$
 with *t* as found and $y = 7.2$, or show M1
 $t = 1.2$ as in (ii)

Alternatively for using
$$y_{max} = \frac{V^2 \sin^2 \alpha}{2g}$$
 with $y_{max} = 7.2$ and $V = 20$
or $\dot{y}^2 = \dot{y}_0^2 - 2gy$ with $\dot{y} = 0$ M2

$$7.2 = \frac{400\sin^2\alpha}{20}$$
A1

[4]

Speed on hitting the wall is 20×0.8 (use of ball rebounding at 10 ms⁻¹ scores B0) For using $y = 0 - \frac{1}{2}gt^2$ $(-7.2 = -\frac{1}{2}10t^2)$ or $0 = \dot{y} - gt$ (0 = 12 - 10t)(ii) B1ft M1

Distance is 9.6 m (No ft if rebound velocity =
$$10 \text{ ms}^{-1}$$
) A1ft

Alternative – speed on hitting the wall is
$$20 \times 0.8$$
B1ftUse trajectory equation, with $\theta = 0^{\circ}$ M1

$$-7.2 = x \tan 0^{\circ} - \frac{gx^2}{2.8^2 \cos^2 0^{\circ}}$$
 (allow ft with halving attempt including 10) A1ft
x = 9.6 m A1

[4]

(iii)
$$\dot{y} = \mp 10 \times 1.2$$
 B1ft

$$\theta = \tan^{-1}(\mp)\frac{\dot{y}}{\dot{x}}$$
 (\dot{x} must have halving attempt. Allow $\dot{x} = 10$) M1

Required angle is 56.3°

A1

F	PM	Τ

Page 4	Mark Scheme Syllab	ous	Paper	
	A AND AS LEVEL – NOVEMBER 2003 9709/8	719	5	
(i)	For using Newton's second law			N
	$120 - 8v - 80 \times 10 \times 0.1 = 80a$			ŀ
	$\frac{1}{5-v} \frac{dv}{dt} = \frac{1}{10}$ from correct working			A
				[
(ii)	For separating the variables and attempting to integrate			N
	$-\ln(5-v) = \frac{1}{10}t + (C)$			ŀ
	For using $v(0) = 0$ to find C (or equivalent by using limits) (C = -ln5)			ľ
	For converting the equation from logarithmic to exponential form (allow even if + <i>C</i> omitted) $(5 \div (5 - v) = e^{t/10})$	m		ľ
	$v = 5(1 - e^{-t/10})$ from correct working			1
				[
(iii)	For using $v = \frac{dx}{dt}$ and attempting to integrate			ľ
	$x = 5(t + 10e^{-t/10}) + (C)$			ŀ
	For using $x(0) = 0$ to find (<i>C</i>) (= -50), then substituting $t = 20$ (or equivalent using limits)			ľ
	Length is 56.8 m			1

For using Newton's second law with $a = v \frac{dv}{dx}$, separating the variables and attempting to integrate M1 $-v - 5\ln(5 - v) = \frac{x}{10} + C$ A1 For using v = 0 when x = 0 to find C (= -5ln5), then substituting t = 20 into v(t) $(v(20) = 5(1 - e^{-2}) = 4.3233)$, And finally substituting v(20) into the above equation $(x = -50(1 - e^{-2}) + 50 \times 2 = 50 + 50e^{-2})$ M1 Length is 56.8m A1

[4]