CAMBRIDGE

international examinations

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05
MATHEMATICS AND HIGHER MATHEMATICS
Paper 5 (Mechanics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	$9709 / 8719$	5

1
For using Newton's second law with $a=v^{2} / r$
$\mathrm{F}=50000 \frac{25^{2}}{1250}$
Magnitude of the force is 25000 N

2 (i) For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with $\bar{y}=5$
For using $\tan \theta=\frac{10}{\bar{y}}$ or equivalent

$$
\theta=63.4^{\circ}
$$

$\begin{array}{ll}\text { (ii) For using } F<\mu R & \text { M1 } \\ m g \sin \theta<\mu m g \cos \theta & \text { A1 }\end{array}$
Alternative for the above 2 marks:
For using $\mu=\tan \phi$ where ϕ is the angle of friction M1
$\phi>\theta$ because cone topples without sliding A1
Coefficient is greater than $2(\mathrm{ft}$ on $\tan \theta$ in (i)) A1ft
N.B. Direct quotation of "topples if $\mu>\tan \theta$ " (scores B2); $\mu>2$ (B1)
$3 \quad$ (i) $\quad T=\frac{88 \times 0.1}{0.4}$
For using Newton's second law $(22-0.2 \times 10=0.2 a) \quad$ M1
(3 term equation needed)
Initial acceleration is $100 \mathrm{~ms}^{-2}$
(ii) For using EPE $=\frac{\lambda x^{2}}{2 L} \quad\left(\frac{88 \times 0.1^{2}}{2 \times 0.4}\right)$

Initial elastic energy is 1.1 J
(iii) Change in GPE $=0.2 \times 10 \times 0.1$

For using the principle of conservation of energy (KE, EPE and GPE must all be represented)
$\left[\frac{1}{2} 0.2 v^{2}=1.1-0.2\right]$
Speed is $3 \mathrm{~ms}^{-1}$

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	$9709 / 8719$	5

4
(i) e.g. For taking moments about $B C$

Distance of centre of mass of triangular portion is
$9.5+\frac{1}{3} \times 6 \quad(=11.5)$
$8 \times 9.5 \times 4.75+\frac{1}{2} \times 8 \times 6 \times 11.5=\left(8 \times 9.5+\frac{1}{2} \times 8 \times 6\right) \bar{x}$
A1ft
Distance is 6.37 cm
N.B. Alternative method e.g. Moments about axis through A perpendicular to $A B \quad$ M1

Distance of C.O.M. of triangular piece removed is 2 B1
$(8 \times 15.5) \times 7.75-\left(\frac{1}{2} \times 8 \times 6\right) \times 2=(124-20) \bar{x}_{1}$ A1ft
$\left(\bar{x}_{1}=9.13\right)$ therefore distance is 6.37 cm
(ii) For taking moments about A

For LHS of $80(15.5-6.37)=T \times 15.5 \sin 30^{\circ}$
For RHS of above equation A1
Tension is 94.2 N
(iii) For resolving forces on the lamina vertically (3 term equation)
$(V=80-94.2 \times 0.5)$ or taking moments about B
$(15.5 V=8 \times 10 \times 6.37)$
Magnitude of vertical component is 32.9 N

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	$9709 / 8719$	5

$5 \quad$ (i) For using $\dot{y}=\dot{y}_{0}-g t$ with $\dot{y}=0 \quad(t=2 \sin \alpha)$
For using $\mathrm{y}=\dot{y}_{0} t-\frac{1}{2} g t^{2}$ with t as found and $y=7.2$, or show
$t=1.2$ as in (ii)
Alternatively for using $y_{\max }=\frac{V^{2} \sin ^{2} \alpha}{2 g}$ with $y_{\max }=7.2$ and $V=20$
or $\dot{y}^{2}=\dot{y}_{0}^{2}-2 g y$ with $\dot{y}=0$
$7.2=\frac{400 \sin ^{2} \alpha}{20}$
Angle is 36.9°
(ii) Speed on hitting the wall is 20×0.8
(use of ball rebounding at $10 \mathrm{~ms}^{-1}$ scores B0)
For using $y=0-\frac{1}{2} g t^{2} \quad\left(-7.2=-\frac{1}{2} 10 t^{2}\right)$ or
$0=\dot{y}-g t \quad(0=12-10 t)$
$t=1.2$
A1

Distance is 9.6 m (No ft if rebound velocity $=10 \mathrm{~ms}^{-1}$)
A1ft

Alternative - speed on hitting the wall is 20×0.8
B1ft
Use trajectory equation, with $\theta=0^{\circ}$
$-7.2=x \tan 0^{\circ}-\frac{g x^{2}}{2.8^{2} \cos ^{2} 0^{\circ}} \quad$ (allow ft with halving attempt including 10)
$x=9.6 \mathrm{~m}$
(iii)
$\dot{y}=\mp 10 \times 1.2$
B1ft
$\theta=\tan ^{-1}(\mp) \frac{\dot{y}}{\dot{x}} \quad(\dot{x}$ must have halving attempt. Allow $\dot{x}=10)$
Required angle is 56.3°

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	$9709 / 8719$	5

6
(i) For using Newton's second law

$$
\begin{aligned}
& 120-8 v-80 \times 10 \times 0.1=80 a \\
& \frac{1}{5-v} \frac{d v}{d t}=\frac{1}{10} \text { from correct working }
\end{aligned}
$$

(ii) For separating the variables and attempting to integrate
$-\ln (5-v)=\frac{1}{10} t+(C)$
For using $v(0)=0$ to find C (or equivalent by using limits)
$(C=-\ln 5)$
For converting the equation from logarithmic to exponential form
(allow even if $+C$ omitted) $\left(5 \div(5-v)=\mathrm{e}^{t / 10}\right)$
$v=5\left(1-\mathrm{e}^{-t / 10}\right)$ from correct working
(iii) For using $v=\frac{d x}{d t}$ and attempting to integrate
$x=5\left(t+10 \mathrm{e}^{-t / 10}\right)+(C)$
For using $x(0)=0$ to find $(C)(=-50)$, then substituting $t=20$
(or equivalent using limits)
Length is 56.8 m

OR

For using Newton's second law with $a=v \frac{d v}{d x}$, separating the variables and attempting to integrate
$-v-5 \ln (5-v)=\frac{x}{10}+C$
For using $v=0$ when $x=0$ to find $C(=-5 \ln 5)$, then substituting
$t=20$ into $v(t)$

$$
\left(v(20)=5\left(1-\mathrm{e}^{-2}\right)=4.3233\right)
$$

And finally substituting $v(20)$ into the above equation

$$
\left(x=-50\left(1-\mathrm{e}^{-2}\right)+50 \times 2=50+50 \mathrm{e}^{-2}\right)
$$

Length is 56.8 m

